Predicting Performance on Dichotomous Questions: Comparing Models for Large-Scale Adaptive Testing
نویسندگان
چکیده
Computerized adaptive testing (CAT) is a mode of testing which has gained increasing popularity over the past years. It selects the next question to ask to the examinee in order to evaluate her level efficiently, by using her answers to the previous questions. Traditionally, CAT systems have been relying on item response theory (IRT) in order to provide an effective measure of latent abilities in possibly large-scale assessments. More recently, from the perspective of providing useful feedback to examinees, other models have been studied for cognitive diagnosis. One of them is the q-matrix model, which draws a link between questions and examinee knowledge components. In this paper, we define a protocol based on performance prediction to evaluate adaptive testing algorithms. We use it to evaluate q-matrices in the context of assessments and compare their behavior to item response theory. Results computed on three real datasets of growing size and of various nature suggest that tests of different type need different models.
منابع مشابه
Application of an Adaptive Neuro-fuzzy Inference System and Mathematical Rate of Penetration Models to Predicting Drilling Rate
The rate of penetration (ROP) is one of the vital parameters which directly affects the drilling time and costs. There are various parameters that influence the drilling rate; they include weight on bit, rotational speed, mud weight, bit type, formation type, and bit hydraulic. Several approaches, including mathematical models and artificial intelligence have been proposed to predict the rate o...
متن کاملEVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE
Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...
متن کاملPredicting Flow Number of Asphalt Mixtures Based on the Marshall Mix design Parameters Using Multivariate Adaptive Regression Spline (MARS)
Rutting is one of the major distresses in the flexible pavements, which is heavily influenced by the asphalt mixtures properties at high temperatures. There are several methods for the characterization of the rutting resistance of asphalt mixtures. Flow number is one of the most important parameters that can be used for the evaluation of rutting. The flow number is measured by the dynamic creep...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملGENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES
In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...
متن کامل